Approximation for Expectations of Unbounded Functions of Dependent Integer-valued Random Variables
نویسنده
چکیده
Expectations of unbounded functions of dependent nonnegative integer-valued random variables are approximated by the expectations of the functions of independent copies of these random variables. The Lindeberg method is used.
منابع مشابه
Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملCountable composition closedness and integer-valued continuous functions in pointfree topology
For any archimedean$f$-ring $A$ with unit in whichbreak$awedge (1-a)leq 0$ for all $ain A$, the following are shown to be equivalent: 1. $A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all integer-valued continuous functions on some frame $L$. 2. $A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$ of all integer-valued continuous functions, in the usual se...
متن کاملInfinite Previsions and Finitely Additive Expectations
We give an extension of de Finetti’s concept of coherence to unbounded (but real-valued) random variables that allows for gambling in the presence of infinite previsions. We present a finitely additive extension of the Daniell integral to unbounded random variables that we believe has advantages over Lebesgue-style integrals in the finitely additive setting. We also give a general version of th...
متن کاملStable Poisson Convergence for Integer-valued Random Variables
Abstract. In this paper, we obtain some stable Poisson Convergence Theorems for arrays of integer-valued dependent random variables. We prove that the limiting distribution is a mixture of Poisson distribution when the conditional second moments on a given σ-algebra of the sequence converge to some positive random variable. Moreover, we apply the main results to the indicator functions of rowis...
متن کاملUNBOUNDEDNESS IN MOILP AND ITS EFFICIENT SOLUTIONS
In this paper we investigate Multi-Objective Integer Linear Programming (MOILP) problems with unbounded feasible region and introduce recession direction for MOILP problems. Then we present necessary and sufficient conditions to have unbounded feasible region and infinite optimal values for objective functions of MOILP problems. Finally we present some examples with unbounded feasible region and fi...
متن کامل